合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
-
> 反离子盐KBr浓度对酰胺基阳离子Gemini表面活性剂的表/界面活性的影响(一)
> 过硫酸钾、K2S2O8对压裂液破胶性能与表面张力的影响——实验部分
> 抖淫app破解版最新版安卓版的身体会长歪,只是被表面张力“捏”了回来!
> 不同温度下氟碳链长度对表面活性剂理化性能的影响
> CO2泡沫稳定性原理、影响因素|CO2-EOR机理与应用前景(三)
> 不同浓度6∶2氟调磺酸的表面张力测定仪器及结果(二)
> 人工冲洗升级为超声波清洗,可改善新能源电池冲压配件的表面张力
> 甜菜碱阳离子表面活性剂压裂液的破胶液表面张力测定
> 纳米熔盐形成机理、表面张力测定及影响因素研究(一)
> 两亲性碳点CDS表面活性剂浓度、胶束对硅酸盐溶液润滑性能的影响(一)
推荐新闻Info
-
> 烷基糖苷表面活性剂界面张力与润湿性相关性研究(二)
> 烷基糖苷表面活性剂界面张力与润湿性相关性研究(一)
> 嵌段比例对温敏聚合物表面张力的影响及临界胶束浓度分析(五)
> 嵌段比例对温敏聚合物表面张力的影响及临界胶束浓度分析(四)
> 利用表面张力优化浮选工艺:调整剂AY在石英-胶磷矿分离中的活性调控(二)
> 利用表面张力优化浮选工艺:调整剂AY在石英-胶磷矿分离中的活性调控(一)
> 嵌段比例对温敏聚合物表面张力的影响及临界胶束浓度分析(三)
> 嵌段比例对温敏聚合物表面张力的影响及临界胶束浓度分析(二)
> 嵌段比例对温敏聚合物表面张力的影响及临界胶束浓度分析(一)
> 温度和碳碳双键数对脂肪酸酯表面张力的影响(二)
烷基糖苷表面活性剂界面张力与润湿性相关性研究(一)
来源: 《地质科技情报》 浏览 22 次 发布时间:2025-12-12
降低界面张力、改变润湿性是表面活性剂应用于油田开发的重要特性。通过测量表面活性剂烷基糖苷溶液的表面张力及其与亲水(亲油)载玻片、原油间的接触角,研究了表面活性剂对油藏润湿性的改变行为。结果表明,表面活性剂分子在水固界面和油水界面的吸附使润湿性发生变化,且其在水固界面的吸附模式是决定润湿一胜改变的关键。同时,在测定油水界面张力,计算水固、油固界面张力的基础上,利用灰色关联分析确定了各界面张力对润湿性的影响程度:水固界面张力>油水界面张力>油固界面张力。可见,在利用表面活性剂改变润湿性的过程中,尤其应注意水固界面状态的变化。
近年来,随着原油勘探开发的不断深入以及表面活性剂合成工艺的逐步发展,表面活性剂越来越多地应用于三次采油、降压增注以及储层保护等技术中[Tqo]。这些应用大都利用了表面活性剂降低油水界面张力、改变润湿性的特性。对于表面活性剂降低油水界面张力的研究已相当成熟口。,但对其改变油、固、水三相润湿性的直观研究以及润湿性改变与油水界面张力的关系却鲜有报道。
油藏的润湿性受岩石、原油、水三相的共同影响。表面活性剂对其中任意两相界面状态的改变都会引起润湿性的变化。而两相界面状态改变的最直接体现是两相界面张力的改变,因此油水、水固、油固界面张力均与润湿性相关。为了掌握表面活性剂对润湿性的改变行为,并明确其与3种界面张力间的相互关系,笔者将以烷基糖苷为表面活性剂,结合室内实验与计算分析进行研究。
(1)接触角的测定 将载玻片或用2稀HC1处理为亲水,或用二甲基硅油(分析纯)处理为亲油后悬于装有待测溶液的石英测量池中。通过带有弯针头的注射器将原油(黏度为490.5mPa·s)滴至载玻片下表面,待油滴稳定后利用DSAIO0光学接触角测量仪(德国Kruss公司产)读取水相接触角。
(2)表面、界面张力的测定 分别利用全自动界面张力仪(芬兰Kibron公司产)和TXS00C旋转滴超低界面张力仪(美国科诺公司产)测定待测溶液的表面张力和油水界面张力。
室温下,不同质量浓度的烷基糖苷(APG)溶液的表面张力以及与亲水(亲油)载玻片、原油间的接触角如图1所示,由图1可知,随着APG质量浓度的增大,亲水、亲油载玻片的接触角都经历了增大一减小一增大的变化历程。在以亲水载玻片为固相的润湿系统中,当APG质量浓度较小时(图2一A),部分APG分子以疏水基朝外附在水固体面上,部分APG分子以极性基朝外吸附在油水界面上。
由于固体的分子密度比油大,对APG分子的吸引作用比油强,所以水固体面的APG分子比油水界面多,从而令接触角总体呈现增大趋势,并在APG质量浓度为100mg/L时达到最大(57.9。)。随着APG质量浓度的增大(图2一B),水固体面和油水界面的APG分子随之增多,且水固体面开始出现以极性基朝外的第二吸附层,因此接触角转而减小。但与此同时,溶液中APG分子的缔合作用增强,它们与水固体面的第二吸附层争夺APG单分子,造成接触角不能降低到初始状态以下。而当APG质量浓度增大到500mg/L后(图2一C),表面张力曲线显示其在溶液中形成了胶束,由于胶束对单分子的争夺能力更强,所以此后接触角又有所增大。
图1 APG质量浓度对表面张力以及原油、载玻片、APG溶液接触角的影响
图2 APG分子在原油一载玻片一APG溶液体系中的分布
由于实验是在室温下进行的,APG分子对亲油载玻片上硅油分子的解吸能力不足,主要靠自身的吸附来改变润湿性,因此以上过程同样适用于以亲油载玻片为固相的润湿系统。





